This is a Demo Server. Data inside this system is only for test purpose.
 

Solitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation method

dc.contributor.author Tanoglu, Gamze
dc.date.accessioned 2024-08-20T17:33:14Z
dc.date.available 2024-08-20T17:33:14Z
dc.date.issued 2007
dc.description Tanoglu, Gamze/0000-0003-4870-6048 en_US
dc.description.abstract The Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order polynomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case are also illustrated. (C) 2006 Published by Elsevier B.V. en_US
dc.description.sponsorship Izmir Institute of Technology [2003-IYTE-27] en_US
dc.description.sponsorship Thank you for the valuable discussion to Prof. Dr. Oktay Pashaev. This work was supported partially by Izmir Institute of Technology, Research Grant, 2003-IYTE-27. en_US
dc.identifier.citation 16
dc.identifier.doi 10.1016/j.cnsns.2005.12.006
dc.identifier.issn 1007-5704
dc.identifier.scopus 2-s2.0-34047166350
dc.identifier.uri https://doi.org/10.1016/j.cnsns.2005.12.006
dc.identifier.uri https://premium.gcris.co/handle/123456789/75
dc.language.iso en en_US
dc.publisher Elsevier Science Bv en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Solitary waves en_US
dc.subject Bilinear transformation method en_US
dc.subject Vector wave equation en_US
dc.subject Nonlinear PDE en_US
dc.title Solitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation method en_US
dc.type journal article en_US
dspace.entity.type Publication
gdc.author.id Tanoglu, Gamze/0000-0003-4870-6048
gdc.author.institutional Tanoglu, Gamze
gdc.author.scopusid 8350347700
gdc.description.department Izmir Institute of Technology en_US
gdc.description.departmenttemp Izmir Inst Technol, Dept Math, TR-35430 Izmir, Turkey en_US
gdc.description.endpage 1201 en_US
gdc.description.issue 7 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1195 en_US
gdc.description.volume 12 en_US
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W2063853529
gdc.identifier.wos WOS:000208278400011
gdc.openalex.fwci 1.00644492
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 17
gdc.plumx.crossrefcites 17
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 18
gdc.scopus.citedcount 18
gdc.wos.citedcount 16
relation.isOrgUnitOfPublication 1695cd7e-e906-4aa9-b2a8-ca9fd8533f22
relation.isOrgUnitOfPublication b0d55d98-9afd-4876-8513-24f68a7a4e18
relation.isOrgUnitOfPublication c88a2d9f-e5ea-4c37-b43a-d857bf35ea2d
relation.isOrgUnitOfPublication 53acb8be-0eeb-496a-bbed-15ff04d7ffe5
relation.isOrgUnitOfPublication 9bff19ba-b18f-4a9d-9f85-9e4af7e88e48
relation.isOrgUnitOfPublication.latestForDiscovery 1695cd7e-e906-4aa9-b2a8-ca9fd8533f22

Files

Collections