Scopus
Permanent URI for this collectionhttps://premium.gcris.co/handle/123456789/32
Browse
Browsing Scopus by Access Right "info:eu-repo/semantics/openAccess"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Journal Article Citation - WoS: 4Citation - Scopus: 4Convergence analysis and numerical solution of the benjamin-bona-mahony equation by lie-trotter splitting(Tubitak Scientific & Technological Research Council Turkey, 2018) Zurnaci, Fatma; Gucuyenen Kaymak, Nurcan; Seydaoglu, Muaz; Tanoglu, GamzeIn this paper, an operator splitting method is used to analyze nonlinear Benjamin-Bona-Mahony-type equations. We split the equation into an unbounded linear part and a bounded nonlinear part and then Lie-Trotter splitting is applied to the equation. The local error bounds are obtained by using the approach based on the differential theory of operators in a Banach space and the quadrature error estimates via Lie commutator bounds. The global error estimate is obtained via Lady Windermere's fan argument. Finally, to confirm the expected convergence order, numerical examples are studied.Article Dose Enhancement Effects of Different-Sized Nanoparticles on Tumors and Surrounding Tissues Using Geant4 Track Structure Simulation(Sciendo, 2025) Tugrul, TaylanFree radicals, which are the most important contributors to cell death in radiotherapy, appear to increase in the presence of nanoparticles. The nanoparticles can be localized within tumor tissues, providing enhanced protection to normal tissues during radiation therapy while achieving significant dose enhancement within tumors. In our study, the dose effects of different sizes of spherical gold nanoparticles were analyzed in the tumor environment and surrounding tissues under photon radiation at various energies with the track structure code using the TOPAS interface. The nano-lattice method was used to create an environment similar to the diffusion-based distribution of nanoparticles in the medium. The Geant4-DNA code was utilized for simulations conducted in this study. Although the interaction cross-section is lower at MeV photon energy levels, the results still indicate an increase in dose due to the presence of nanoparticles (NPs) in the medium. As the size of gold nanoparticles increases, the spread in dose enhancements becomes more apparent. The lowest average dose enhancement factor (DEF) values at lateral points were observed for 28.4 nm NPs at MeV photon energy. In this study, the contribution of gold nanoparticles to dose enhancement was investigated using the Monte Carlo track structure algorithm. Additionally, the potential dose variations in the surrounding tissue resulting from the introduction of gold nanoparticles were analyzed. Even though an increase in DEF values was observed at MeV energy levels, these values might vary with a better understanding of biological effects such as cell cycle disruption, oxidative stress, and impaired DNA repair. This study offers valuable insights into nanoparticle-assisted radiation applications, including optimal nanoparticle size and applicable energy levels. By enhancing our understanding of the effects on tissues beyond the tumor and within the surrounding environment, it aims to provide critical information for researchers in the field and make a meaningful contribution to the literature.Article Dose Enhancement Effects of Different-Sized Nanoparticles on Tumors and Surrounding Tissues Using Geant4 Track Structure Simulation(Sciendo, 2025) Tugrul, TaylanFree radicals, which are the most important contributors to cell death in radiotherapy, appear to increase in the presence of nanoparticles. The nanoparticles can be localized within tumor tissues, providing enhanced protection to normal tissues during radiation therapy while achieving significant dose enhancement within tumors. In our study, the dose effects of different sizes of spherical gold nanoparticles were analyzed in the tumor environment and surrounding tissues under photon radiation at various energies with the track structure code using the TOPAS interface. The nano-lattice method was used to create an environment similar to the diffusion-based distribution of nanoparticles in the medium. The Geant4-DNA code was utilized for simulations conducted in this study. Although the interaction cross-section is lower at MeV photon energy levels, the results still indicate an increase in dose due to the presence of nanoparticles (NPs) in the medium. As the size of gold nanoparticles increases, the spread in dose enhancements becomes more apparent. The lowest average dose enhancement factor (DEF) values at lateral points were observed for 28.4 nm NPs at MeV photon energy. In this study, the contribution of gold nanoparticles to dose enhancement was investigated using the Monte Carlo track structure algorithm. Additionally, the potential dose variations in the surrounding tissue resulting from the introduction of gold nanoparticles were analyzed. Even though an increase in DEF values was observed at MeV energy levels, these values might vary with a better understanding of biological effects such as cell cycle disruption, oxidative stress, and impaired DNA repair. This study offers valuable insights into nanoparticle-assisted radiation applications, including optimal nanoparticle size and applicable energy levels. By enhancing our understanding of the effects on tissues beyond the tumor and within the surrounding environment, it aims to provide critical information for researchers in the field and make a meaningful contribution to the literature.Journal Article Citation - WoS: 4Citation - Scopus: 9End-to-end security implementation for mobile devices using TLS protocol(Springer France, 2006) Kayayurt, Baris; Tuglular, Tugkan; Tuğlular, Tuğkan; Bilgisayar Mühendisliği BölümüEnd-to-end security has been an emerging need for mobile devices with the widespread use of personal digital assistants and mobile phones. Transport Layer Security Protocol (TLS) is an end-to-end security protocol that is commonly used on the Internet, together with its predecessor, SSL protocol. By implementing TLS protocol in the mobile world, the advantage of the proven security model of this protocol can be utilized. The main design goals of mobile end-to-end security protocol are maintainability and extensibility. Cryptographic operations are performed with a free library, Bouncy Castle Cryptography Package. The object oriented architecture of proposed end-to-end security protocol implementation makes the replacement of this library with another cryptography package easier. The implementation has been experimented with different cases, which represent use of different cryptographic algorithms.Journal Article Citation - WoS: 16Citation - Scopus: 18Solitary wave solution of nonlinear multi-dimensional wave equation by bilinear transformation method(Elsevier Science Bv, 2007) Tanoglu, GamzeThe Hirota method is applied to construct exact analytical solitary wave solutions of the system of multi-dimensional nonlinear wave equation for n-component vector with modified background. The nonlinear part is the third-order polynomial, determined by three distinct constant vectors. These solutions have not previously been obtained by any analytic technique. The bilinear representation is derived by extracting one of the vector roots (unstable in general). This allows to reduce the cubic nonlinearity to a quadratic one. The transition between other two stable roots gives us a vector shock solitary wave solution. In our approach, the velocity of solitary wave is fixed by truncating the Hirota perturbation expansion and it is found in terms of all three roots. Simulations of solutions for the one component and one-dimensional case are also illustrated. (C) 2006 Published by Elsevier B.V.Journal Article Citation - WoS: 9Citation - Scopus: 8Synthesis and characterization of novel high temperature structural adhesives based on nadic end capped MDA-BTDA-ODA copolyimide(Iop Publishing Ltd, 2018) Acar, Oktay; Varis, Serhat; Isik, Tugba; Tirkes, Seha; Demir, Mustafa M.; Demir, MustafaA series of novel copolyimide structural adhesives were synthesized using 4,4'-diaminodiphenyl-methane (MDA), 3,4'-oxydianiline (ODA) and 3,3',4,4'-benzophenonetetracarboxylic acid dianhy-dride (BTDA) as co-monomers, and nadic anhydride as an end cap reagent. The adhesives with different MDA and ODA contents were examined in terms of their structure, thermal stability, mechanical properties, and adhesive performance. They have glass transition temperatures (T-g) about 400 degrees C, with thermal stability up to 500 degrees C. The effect of diamine monomer compositions on adhesion performance and processability of the copolyimides were studied. The copolyimides exhibited adhesion strength up to 16.3 MPa at room temperature. Nadic end capped MDA-BTDA-ODA copolyimide resins gained adjustable and controllable processability with the addition of ether bridged aromatic segments. The copolyimide adhesive with equimolar composition of MDA: ODA is distinguished form the both commercial PMR-15 and LARC RP-46 polyimides in terms of its better processability and mechanical performance.Journal Article Citation - WoS: 13Citation - Scopus: 18Triboluminescent electrospun mats with blue-green emission under mechanical force(American Chemical Society, 2017) Incel, Anil; Varlikli, Canan; McMillen, Colin D.; Demir, Mustafa M.; Demir, MustafaFibrous mechanosensing elements can provide information about the direction of crack propagation and the mechanism of material failure when they are homogeneously dispersed into the bulk volume of materials. A fabrication strategy of fibrous systems showing triboluminescent (TL) responses is in high demand for such applications. In this work, micrometer-sized Cu(NCS) (py)(2)(PPh3) crystals were synthesized, and polymeric fibrous mats containing the TL crystals were obtained via electrospinning as a stress probe for the determination of mechanical impact. Four different polymeric systems have been employed (PMMA, PS, PU, and PVDF), and the mechano-optical sensing performance of electrospun mats of the polymer-crystal composites was measured. Photophysical properties (quantum yield, band gap, and broadness of the emission) of the TL crystal/electrospun mat composites were also studied. TL and PL emission maxima of the PU-based composite mat show identical behavior due to the chemical affinity between the two structures and the smallest fiber diameter. Moreover, the PU fiber mats exhibit long-lived bluish-green emission persisting over a large number of drops.Peer Review Citation - WoS: 10Citation - Scopus: 11An update on molecular biology and drug resistance mechanisms of multiple myeloma(Elsevier Science inc, 2015) Mutlu, Pelin; Kiraz, Yagmur; Gunduz, Ufuk; Baran, Yusuf; Baran, YusufMultiple myeloma (MM), a neoplasm of plasma cells, is the second most common hematological malignancy. Incidance rates increase after age 40. MM is most commonly seen in men and African-American population. There are several factors to this, such as obesity, environmental factors, family history, genetic factors and monoclonal gammopathies of undetermined significance (MGUS) that have been implicated as potentially etiologic. Development of MM involves a series of complex molecular events, including chromosomal abnormalities, oncogene activation and growth factor dysregulation. Chemotherapy is the most commonly used treatment strategy in MM. However, MM is a difficult disease to treat because of its marked resistance to chemotherapy. MM has been shown to be commonly multidrug resistance (MDR)-negative at diagnosis and associated with a high incidence of MDR expression at relapse. This review deals with the molecular aspects of MM, drug resistance mechanisms during treatment and also possible new applications for overcoming drug resistance. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
