Pubmed
Permanent URI for this collectionhttps://premium.gcris.co/handle/123456789/34
Browse
Browsing Pubmed by WoS Q "N/A"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Journal Article Citation - WoS: 17Aggregatibacter actinomycetemcomitans: GroEL protein promotes conversion of human CD4+T cells into IFNγ IL10 producing Tbet+Th1 cells(Public Library Science, 2012) Saygili, Tahsin; Akincilar, Semih Can; Akgul, Bunyamin; Nalbant, Ayten; Akgül, BünyaminOne of the heat shock family protein (Hsp) expressing bacteria is the gram negative, periodontal pathogen Aggregatibacter actinomycetemcomitans (Aa). A. actinomycetemcomitans' Hsp is a 64-kDa GroEL-protein, which has been shown to influence the host cells. In this study we used recombinant A. actinomycetemcomitans GroEL (rAaGroEL) protein as a model antigen to study GroEL-mediated T cell immune response. Human peripheral mononuclear cells (PBMCs), when stimulated with recombinant rAaGroEL, expressed early activation marker CD69 and IL-2R (CD25). CD25 and CD69 expressions were higher in CD4+ T cells compared to CD8+ T cells. rAaGroEL-responding CD4+ T cells expressed IL-10, IFN gamma and TNF alpha cytokines. Interestingly, there were also IL-10 and IFN gamma double cytokine producing CD4+ T cells. Additionally, IFN gamma expressing CD4+ T cells were also T-bet positive. Altogether the results suggest that rAaGroEL protein affects CD4+ T cells to differentiate into IFN gamma IL10-secreting T-bet+ Th1 cells.Peer Review Citation - WoS: 4The importance of protein profiling in the diagnosis and treatment of hematologic malignancies(Galenos Yayincilik, 2011) Sanli-Mohamed, Gulsah; Turan, Taylan; Ekiz, Huseyin Atakan; Baran, Yusuf; Baran, YusufProteins are important targets in cancer research because malignancy is associated with defects in cell protein machinery. Protein profiling is an emerging independent subspecialty of proteomics that is rapidly expanding and providing unprecedented insight into biological events. Quantitative assessment of protein levels in hematologic malignancies seeks a comprehensive understanding of leukemia-associated protein patterns for use in aiding diagnosis, follow-up treatment, and the prediction of clinical outcomes. Many recently developed high-throughput proteomic methods can be applied to protein profiling. Herein the importance of protein profiling, its exploitation in leukemia research, and its clinical usefulness in the treatment and diagnosis of various cancer types, and techniques for determining changes in protein profiling are reviewed. (Turk J Hematol 2011; 28: 1-14)Journal Article Citation - WoS: 10Transcriptomics analysis of circular RNAs differentially expressed in apoptotic HeLa cells(Frontiers Media Sa, 2019) Yaylak, Bilge; Erdogan, Ipek; Akgul, Bunyamin; Akgül, BünyaminApoptosis is a form of regulated cell death that plays a critical role in survival and developmental homeostasis. There are numerous reports on regulation of apoptosis by protein-coding genes as well as small non-coding RNAs, such as microRNAs. However, there is no comprehensive investigation of circular RNAs (circRNA) that are differentially expressed under apoptotic conditions. We have performed a transcriptomics study in which we first triggered apoptosis in HeLa cells through treatment with four different agents, namely cisplatin, doxorubicin, TNF-alpha and anti-Fas mAb. Total RNAs isolated from control as well as treated cells were treated with RNAse R to eliminate the linear RNAs. The remaining RNAs were then subjected to deep-sequencing to identify differentially expressed circRNAs. Interestingly, some of the dys-regulated circRNAs were found to originate from protein-coding genes well-documented to regulate apoptosis. A number of candidate circRNAs were validated with qPCR with or without RNAse R treatment as well. We then took advantage of bioinformatics tools to investigate the coding potential of differentially expressed RNAs. Additionally, we examined the candidate circRNAs for the putative miRNA-binding sites and their putative target mRNAs. Our analyses point to a potential for circRNA-mediated sponging of miRNAs known to regulate apoptosis. In conclusion, this is the first transcriptomics study that provides a complete circRNA profile of apoptotic cells that might shed light onto the potential role of circRNAs in apoptosis.
